Day 5: If You Give a Seed a Fertilizer
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- Code block support is not fully rolled out yet but likely will be in the middle of the event. Try to share solutions as both code blocks and using something such as https://topaz.github.io/paste/ , pastebin, or github (code blocks to future proof it for when 0.19 comes out and since code blocks currently function in some apps and some instances as well if they are running a 0.19 beta)
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
🔒This post will be unlocked when there is a decent amount of submissions on the leaderboard to avoid cheating for top spots
🔓 Unlocked after 27 mins (current record for time, hard one today)
Python
Questions and feedback welcome!
import portion as P from .solver import Solver _maps = [ 'seed-to-soil', 'soil-to-fertilizer', 'fertilizer-to-water', 'water-to-light', 'light-to-temperature', 'temperature-to-humidity', 'humidity-to-location', ] def group_lines_in_maps(lines): group = [] for line in lines: if not line: yield group group = [] continue group.append(line) yield group class Day05(Solver): def __init__(self): super().__init__(5) self.seeds = [] self.mappings = {} def presolve(self, input: str): lines = input.rstrip().split('\n') self.seeds = list(map(int, lines[0].split(' ')[1:])) self.mappings = {} for mapping in group_lines_in_maps(lines[2:]): mapping_name = mapping[0].split(' ')[0] mapping_ranges = map(lambda rng: tuple(map(int, rng.split(' '))), mapping[1:]) self.mappings[mapping_name] = list(mapping_ranges) def solve_first_star(self): locations = [] for seed in self.seeds: location = seed for mapping in map(self.mappings.get, _maps): assert mapping for dest, source, length in mapping: if 0 <= location - source < length: location = dest + (location - source) break locations.append(location) return min(locations) def solve_second_star(self): current_set = P.empty() for i in range(0, len(self.seeds), 2): current_set = current_set | P.closedopen(self.seeds[i], self.seeds[i] + self.seeds[i + 1]) for mapping in map(self.mappings.get, _maps): assert mapping unmapped = current_set next_set = P.empty() for dest, source, length in mapping: delta = dest - source source_range = P.closedopen(source, source + length) mappable = unmapped & source_range mapped_to_destination = mappable.apply( lambda x: (x.left, x.lower + delta, x.upper + delta, x.right)) # pylint: disable=cell-var-from-loop next_set = next_set | mapped_to_destination unmapped = unmapped - source_range current_set = next_set | unmapped return next(P.iterate(current_set, step=1))