Day 22: Sand

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  • What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
  • Where do I participate?: https://adventofcode.com/
  • Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
  • hades@lemm.ee
    ·
    11 months ago

    Python

    assert_full_match is basically re.full_match, if you want to run it, you can grab my code from Github.

    10.578 line-seconds.

    import collections
    
    from aoc23.util import assert_full_match
    
    from .solver import Solver
    
    
    def _trace_brick(x0, y0, x1, y1):
      if x0 == x1:
        y0, y1 = min(y0, y1), max(y0, y1)
        for y in range(y0, y1 + 1):
          yield (x0, y)
      elif y0 == y1:
        x0, x1 = min(x0, x1), max(x0, x1)
        for x in range(x0, x1 + 1):
          yield (x, y0)
      else:
        raise ValueError(f'not a brick: {x0}, {y0}, {x1}, {y1}')
    
    class Day22(Solver):
      can_be_deleted: set[int]
      support_map: dict[int, list[int]]
      brick_count: int
    
      def __init__(self):
        super().__init__(22)
    
      def presolve(self, input: str):
        lines = input.splitlines()
        bricks = []
        for line in lines:
          x0, y0, z0, x1, y1, z1 = assert_full_match(r'(\d+),(\d+),(\d+)~(\d+),(\d+),(\d+)', line).groups()
          bricks.append(((int(x0), int(y0), int(z0)), (int(x1), int(y1), int(z1))))
        self.brick_count = len(bricks)
        bricks.sort(key=lambda brick: min(brick[0][2], brick[1][2]))
        self.can_be_deleted = set()
        topmost_brick_per_position: dict[tuple[int, int], tuple[int, int]] = {}
        self.support_map = {}
        for brick_id, ((x0, y0, z0), (x1, y1, z1)) in enumerate(bricks):
          support_brick_ids = set()
          support_brick_z = 0
          for (x, y) in _trace_brick(x0, y0, x1, y1):
            potential_support = topmost_brick_per_position.get((x, y))
            if not potential_support:
              continue
            if potential_support[0] > support_brick_z:
              support_brick_z = potential_support[0]
              support_brick_ids = {potential_support[1]}
            elif potential_support[0] == support_brick_z:
              support_brick_ids.add(potential_support[1])
          self.support_map[brick_id] = list(support_brick_ids)
          if len(support_brick_ids) == 1:
            self.can_be_deleted.discard(support_brick_ids.pop())
          for (x, y) in _trace_brick(x0, y0, x1, y1):
            topmost_brick_per_position[(x, y)] = (support_brick_z + 1 + z1 - z0, brick_id)
          self.can_be_deleted.add(brick_id)
    
    
      def solve_first_star(self) -> int:
        return len(self.can_be_deleted)
    
      def solve_second_star(self) -> int:
        reverse_support_map = collections.defaultdict(set)
        for brick_id, support_brick_ids in self.support_map.items():
          for support_brick_id in support_brick_ids:
            reverse_support_map[support_brick_id].add(brick_id)
        total = 0
        for brick_id in range(self.brick_count):
          all_destroyed_bricks = set()
          queue = [brick_id]
          while queue:
            destroy_brick_id = queue.pop(0)
            for potential_destroyed_brick in reverse_support_map[destroy_brick_id]:
              if potential_destroyed_brick in all_destroyed_bricks:
                continue
              remaining_supports = set(self.support_map[potential_destroyed_brick])
              remaining_supports -= (all_destroyed_bricks | {destroy_brick_id})
              if not remaining_supports:
                queue.append(potential_destroyed_brick)
            all_destroyed_bricks.add(destroy_brick_id)
          total += len(all_destroyed_bricks) - 1
        return total
    
  • cvttsd2si@programming.dev
    ·
    11 months ago

    Scala3

    Not much to say about this, very straightforward implementation that was still fast enough

    case class Pos3(x: Int, y: Int, z: Int)
    case class Brick(blocks: List[Pos3]):
        def dropBy(z: Int) = Brick(blocks.map(b => b.copy(z = b.z - z)))
        def isSupportedBy(other: Brick) = ???
    
    def parseBrick(a: String): Brick = a match
        case s"$x1,$y1,$z1~$x2,$y2,$z2" => Brick((for x <- x1.toInt to x2.toInt; y <- y1.toInt to y2.toInt; z <- z1.toInt to z2.toInt yield Pos3(x, y, z)).toList)
    
    def dropOn(bricks: List[Brick], brick: Brick): (List[Brick], List[Brick]) =
        val occupied = bricks.flatMap(d => d.blocks.map(_ -> d)).toMap
    
        @tailrec def go(d: Int): (Int, List[Brick]) =
            val dropped = brick.dropBy(d).blocks.toSet
            if dropped.intersect(occupied.keySet).isEmpty && !dropped.exists(_.z <= 0) then
                go(d + 1)
            else
                (d - 1, occupied.filter((p, b) => dropped.contains(p)).map(_._2).toSet.toList)
        
        val (d, supp) = go(0)
        (brick.dropBy(d) :: bricks, supp)
    
    def buildSupportGraph(bricks: List[Brick]): Graph[Brick, DiEdge[Brick]] =
        val (bs, edges) = bricks.foldLeft((List[Brick](), List[DiEdge[Brick]]()))((l, b) => 
            val (bs, supp) = dropOn(l._1, b)
            (bs, supp.map(_ ~> bs.head) ++ l._2)
        )
        Graph() ++ (bs, edges)
    
    def parseSupportGraph(a: List[String]): Graph[Brick, DiEdge[Brick]] =
        buildSupportGraph(a.map(parseBrick).sortBy(_.blocks.map(_.z).min))
    
    def wouldDrop(g: Graph[Brick, DiEdge[Brick]], b: g.NodeT): Long =
        @tailrec def go(shaking: List[g.NodeT], falling: Set[g.NodeT]): List[g.NodeT] = 
            shaking match
                case h :: t => 
                    if h.diPredecessors.forall(falling.contains(_)) then
                        go(h.diSuccessors.toList ++ t, falling + h)
                    else
                        go(t, falling)
                case _ => falling.toList
        
        go(b.diSuccessors.toList, Set(b)).size
    
    def task1(a: List[String]): Long = parseSupportGraph(a).nodes.filter(n => n.diSuccessors.forall(_.inDegree > 1)).size
    def task2(a: List[String]): Long = 
        val graph = parseSupportGraph(a)
        graph.nodes.toList.map(wouldDrop(graph, _) - 1).sum
    
  • Treeniks@lemmy.ml
    ·
    edit-2
    11 months ago

    Zig

    https://github.com/Treeniks/advent-of-code/blob/master/2023/day22/zig/src/main.zig

    (or on codeberg if you don't like to use github: https://codeberg.org/Treeniks/advent-of-code/src/branch/master/2023/day22/zig/src/main.zig )

    Every time I use Zig, I love the result, but I hate writing it. The language is just a little too inflexible for quick and dirty solutions to quickly try out an idea or debug print something useful, but once you're done and have a result, it feels quite complete.

  • sjmulder@lemmy.sdf.org
    ·
    11 months ago

    C

    Part 1 was fun, essentially a matter of mapping a grid and implementing a function to scan above and below bricks.

    Was worried part 2 would either make the grid approach impossible (large numbers) or have combinatory complexity that would necessitate some super efficient dependency table that I don't know about. Luckily that wasn't the case! Phew.

    https://github.com/sjmulder/aoc/blob/master/2023/c/day22.c