Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
Where do I participate?: https://adventofcode.com/
Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
Python
import numpy as np import z3 from aoc23.util import assert_full_match from .solver import Solver class Day24(Solver): def __init__(self): super().__init__(24) self.test_area = [200000000000000, 400000000000000] def presolve(self, input: str): self.stones = [] for line in input.splitlines(): (x, y, z, vx, vy, vz) = assert_full_match( r'([0-9-]+), +([0-9-]+), +([0-9-]+) +@ +([0-9-]+), +([0-9-]+), +([0-9-]+)', line).groups() self.stones.append((int(x), int(y), int(z), int(vx), int(vy), int(vz))) def solve_first_star(self) -> int | str: count = 0 for i, stone_a in enumerate(self.stones): for stone_b in self.stones[i+1:]: matrix = np.array([[stone_a[3], -stone_b[3]], [stone_a[4], -stone_b[4]],]) rhs = np.array([[stone_b[0] - stone_a[0]], [stone_b[1] - stone_a[1]]]) try: x = np.linalg.solve(matrix, rhs) if not (x > 0).all(): continue intersection_x = stone_a[0] + stone_a[3] * x[0, 0] intersection_y = stone_a[1] + stone_a[4] * x[0, 0] if (self.test_area[0] <= intersection_x <= self.test_area[1] and self.test_area[0] <= intersection_y <= self.test_area[1]): count += 1 except np.linalg.LinAlgError: continue return count def solve_second_star(self) -> int | str: x0 = z3.Int('x0') y0 = z3.Int('y0') z0 = z3.Int('z0') vx0 = z3.Int('vx0') vy0 = z3.Int('vy0') vz0 = z3.Int('vz0') t1 = z3.Int('t1') t2 = z3.Int('t2') t3 = z3.Int('t3') solver = z3.Solver() solver.add(x0 + vx0 * t1 == self.stones[0][0] + self.stones[0][3] * t1) solver.add(y0 + vy0 * t1 == self.stones[0][1] + self.stones[0][4] * t1) solver.add(z0 + vz0 * t1 == self.stones[0][2] + self.stones[0][5] * t1) solver.add(x0 + vx0 * t2 == self.stones[1][0] + self.stones[1][3] * t2) solver.add(y0 + vy0 * t2 == self.stones[1][1] + self.stones[1][4] * t2) solver.add(z0 + vz0 * t2 == self.stones[1][2] + self.stones[1][5] * t2) solver.add(x0 + vx0 * t3 == self.stones[2][0] + self.stones[2][3] * t3) solver.add(y0 + vy0 * t3 == self.stones[2][1] + self.stones[2][4] * t3) solver.add(z0 + vz0 * t3 == self.stones[2][2] + self.stones[2][5] * t3) assert solver.check() == z3.sat model = solver.model() return sum([model[x0].as_long(), model[y0].as_long(), model[z0].as_long()])