• 0 Posts
  • 6 Comments
Joined 1 year ago
cake
Cake day: June 20th, 2023

help-circle
  • Odin

    When I read the problem description I expected the input to also be 2 digit numbers. When I looked at it I just had to say "huh."

    Second part I think you definitely have to do in reverse (edit: if you are doing a linear search for the answer), as that allows you to nope out as soon as you find a match, whereas with doing it forward you have to keep checking just in case.

    Formatted code

    package day5
    
    import "core:fmt"
    import "core:strings"
    import "core:slice"
    import "core:strconv"
    
    Range :: struct {
        dest: int,
        src: int,
        range: int,
    }
    
    Mapper :: struct {
        ranges: []Range,
    }
    
    parse_range :: proc(s: string) -> (ret: Range) {
        rest := s
    
        parseLen := -1
    
        destOk: bool
        ret.dest, destOk = strconv.parse_int(rest, 10, &parseLen)
        rest = strings.trim_left_space(rest[parseLen:])
    
        srcOk: bool
        ret.src, srcOk = strconv.parse_int(rest, 10, &parseLen)
        rest = strings.trim_left_space(rest[parseLen:])
    
        rangeOk: bool
        ret.range, rangeOk = strconv.parse_int(rest, 10, &parseLen)
    
        return
    }
    
    parse_mapper :: proc(ss: []string) -> (ret: Mapper) {
        ret.ranges = make([]Range, len(ss)-1)
        for s, i in ss[1:] {
            ret.ranges[i] = parse_range(s)
        }
    
        return
    }
    
    parse_mappers :: proc(ss: []string) -> []Mapper {
        mapsStr := make([dynamic][]string)
        defer delete(mapsStr)
    
        restOfLines := ss
        isLineEmpty :: proc(s: string)->bool {return len(s)==0}
    
        for i, found := slice.linear_search_proc(restOfLines, isLineEmpty); 
            found; 
            i, found  = slice.linear_search_proc(restOfLines, isLineEmpty) {
            
            append(&mapsStr, restOfLines[:i])
            restOfLines = restOfLines[i+1:]
        }
        append(&mapsStr, restOfLines[:])
    
        return slice.mapper(mapsStr[1:], parse_mapper)
    }
    
    apply_mapper :: proc(mapper: Mapper, num: int) -> int {
        for r in mapper.ranges {
            if num >= r.src && num - r.src < r.range do return num - r.src + r.dest
        }
    
        return num
    }
    
    p1 :: proc(input: []string) {
        maps := parse_mappers(input)
        defer {
            for m in maps do delete(m.ranges)
            delete(maps)
        }
    
        restSeeds := input[0][len("seeds: "):]
        min := 0x7fffffff
    
        for len(restSeeds) > 0 {
            seedLen := -1
            seed, seedOk := strconv.parse_int(restSeeds, 10, &seedLen)
            restSeeds = strings.trim_left_space(restSeeds[seedLen:])
    
            fmt.print(seed)
            for m in maps {
                seed = apply_mapper(m, seed)
                fmt.print(" ->", seed)
            }
            fmt.println()
    
            if seed < min do min = seed
        }
    
        fmt.println(min)
    }
    
    apply_mapper_reverse :: proc(mapper: Mapper, num: int) -> int {
        for r in mapper.ranges {
            if num >= r.dest && num - r.dest < r.range do return num - r.dest + r.src
        }
    
        return num
    }
    
    p2 :: proc(input: []string) {
        SeedRange :: struct {
            start: int,
            len: int,
        }
    
        seeds := make([dynamic]SeedRange)
        restSeeds := input[0][len("seeds: "):]
    
        for len(restSeeds) > 0 {
            seedLen := -1
            seedS, seedSOk := strconv.parse_int(restSeeds, 10, &seedLen)
            restSeeds = strings.trim_left_space(restSeeds[seedLen:])
    
            seedL, seedLOk := strconv.parse_int(restSeeds, 10, &seedLen)
            restSeeds = strings.trim_left_space(restSeeds[seedLen:])
    
            append(&seeds, SeedRange{seedS, seedL})
        }
    
        maps := parse_mappers(input)
        defer {
            for m in maps do delete(m.ranges)
            delete(maps)
        }
    
        for i := 0; true; i += 1 {
            rseed := i
            #reverse for m in maps {
                rseed = apply_mapper_reverse(m, rseed)
            }
    
            found := false
            for sr in seeds {
                if rseed >= sr.start && rseed < sr.start + sr.len {
                    found = true
                    break
                }
            }
            if found {
                fmt.println(i)
                break
            }
        }
    }
    



  • Did this in Odin

    Here's a tip: if you are using a language / standard library that doesn't have a set, you can mimic it with a map from your key to a nullary (in this case an empty struct)

    formatted code

    package day3
    
    import "core:fmt"
    import "core:strings"
    import "core:unicode"
    import "core:strconv"
    
    flood_get_num :: proc(s: string, i: int) -> (parsed: int, pos: int) {
        if !unicode.is_digit(rune(s[i])) do return -99999, -1
    
        pos = strings.last_index_proc(s[:i+1], proc(r:rune)->bool{return !unicode.is_digit(r)})
        pos += 1
    
        ok: bool
        parsed, ok = strconv.parse_int(s[pos:])
    
        return parsed, pos
    }
    
    p1 :: proc(input: []string) {
        // wow what a gnarly type
        foundNumSet := make(map[[2]int]struct{})
        defer delete(foundNumSet)
    
        total := 0
    
        for y in 0..

  • Did mine in Odin. Found this day's to be super easy, most of the challenge was just parsing.

    package day2
    
    import "core:fmt"
    import "core:strings"
    import "core:strconv"
    import "core:unicode"
    
    Round :: struct {
        red: int,
        green: int,
        blue: int,
    }
    
    parse_round :: proc(s: string) -> Round {
        ret: Round
    
        rest := s
        for {
            nextNumAt := strings.index_proc(rest, unicode.is_digit)
            if nextNumAt == -1 do break
            rest = rest[nextNumAt:]
    
            numlen: int
            num, ok := strconv.parse_int(rest, 10, &numlen)
            rest = rest[numlen+len(" "):]
    
            if rest[:3] == "red" {
                ret.red = num
            } else if rest[:4] == "blue" {
                ret.blue = num
            } else if rest[:5] == "green" {
                ret.green = num
            }
        }
    
        return ret
    }
    
    Game :: struct {
        id: int,
        rounds: [dynamic]Round,
    }
    
    parse_game :: proc(s: string) -> Game {
        ret: Game
    
        rest := s[len("Game "):]
    
        idOk: bool
        idLen: int
        ret.id, idOk = strconv.parse_int(rest, 10, &idLen)
        rest = rest[idLen+len(": "):]
    
        for len(rest) > 0 {
            endOfRound := strings.index_rune(rest, ';')
            if endOfRound == -1 do endOfRound = len(rest)
    
            append(&ret.rounds, parse_round(rest[:endOfRound]))
            rest = rest[min(endOfRound+1, len(rest)):]
        }
    
        return ret
    }
    
    is_game_possible :: proc(game: Game) -> bool {
        for round in game.rounds {
            if round.red   > 12 ||
               round.green > 13 ||
               round.blue  > 14 {
                return false
            }
        }
        return true
    }
    
    p1 :: proc(input: []string) {
        totalIds := 0
    
        for line in input {
            game := parse_game(line)
            defer delete(game.rounds)
    
            if is_game_possible(game) do totalIds += game.id
        }
    
        fmt.println(totalIds)
    }
    
    p2 :: proc(input: []string) {
        totalPower := 0
    
        for line in input {
            game := parse_game(line)
            defer delete(game.rounds)
    
            minRed   := 0
            minGreen := 0
            minBlue  := 0
            for round in game.rounds {
                minRed   = max(minRed  , round.red  )
                minGreen = max(minGreen, round.green)
                minBlue  = max(minBlue , round.blue )
            }
    
            totalPower += minRed * minGreen * minBlue
        }
    
        fmt.println(totalPower)
    }
    

  • Did this in Odin (very hashed together, especially finding the last number in part 2):

    spoiler
    package day1
    
    import "core:fmt"
    import "core:strings"
    import "core:strconv"
    import "core:unicode"
    
    p1 :: proc(input: []string) {
        total := 0
    
        for line in input {
            firstNum := line[strings.index_proc(line, unicode.is_digit):][:1]
            lastNum := line[strings.last_index_proc(line, unicode.is_digit):][:1]
    
            calibrationValue := strings.concatenate({firstNum, lastNum})
            defer delete(calibrationValue)
    
            num, ok := strconv.parse_int(calibrationValue)
    
            total += num
        }
    
        // daggonit thought it was the whole numbers
        /*
        for line in input {
            firstNum := line
    
            fFrom := strings.index_proc(firstNum, unicode.is_digit)
            firstNum = firstNum[fFrom:]
    
            fTo := strings.index_proc(firstNum, proc(r:rune)->bool {return !unicode.is_digit(r)})
            if fTo == -1 do fTo = len(firstNum)
            firstNum = firstNum[:fTo]
    
    
            lastNum := line
            lastNum = lastNum[:strings.last_index_proc(lastNum, unicode.is_digit)+1]
            lastNum = lastNum[strings.last_index_proc(lastNum, proc(r:rune)->bool {return !unicode.is_digit(r)})+1:]
    
            calibrationValue := strings.concatenate({firstNum, lastNum})
            defer delete(calibrationValue)
    
            num, ok := strconv.parse_int(calibrationValue, 10)
            if !ok {
                fmt.eprintf("%s could not be parsed from %s", calibrationValue, line)
                return
            }
    
            total += num;
        }
        */
    
        fmt.println(total)
    }
    
    p2 :: proc(input: []string) {
        parse_wordable :: proc(s: string) -> int {
            if len(s) == 1 {
                num, ok := strconv.parse_int(s)
                return num
            } else do switch s {
                case "one"  : return 1
                case "two"  : return 2
                case "three": return 3
                case "four" : return 4
                case "five" : return 5
                case "six"  : return 6
                case "seven": return 7
                case "eight": return 8
                case "nine" : return 9
            }
    
            return -1
        }
    
        total := 0
    
        for line in input {
            firstNumI, firstNumW := strings.index_multi(line, {
                "one"  , "1",
                "two"  , "2",
                "three", "3",
                "four" , "4",
                "five" , "5",
                "six"  , "6",
                "seven", "7",
                "eight", "8",
                "nine" , "9",
            })
            firstNum := line[firstNumI:][:firstNumW]
    
    
            // last_index_multi doesn't seem to exist, doing this as backup
            lastNumI, lastNumW := -1, -1
            for {
                nLastNumI, nLastNumW := strings.index_multi(line[lastNumI+1:], {
                    "one"  , "1",
                    "two"  , "2",
                    "three", "3",
                    "four" , "4",
                    "five" , "5",
                    "six"  , "6",
                    "seven", "7",
                    "eight", "8",
                    "nine" , "9",
                })
    
                if nLastNumI == -1 do break
    
                lastNumI += nLastNumI+1
                lastNumW  = nLastNumW
            }
            lastNum := line[lastNumI:][:lastNumW]
    
            total += parse_wordable(firstNum)*10 + parse_wordable(lastNum)
        }
    
        fmt.println(total)
    }
    

    Had a ton of trouble with part 1 until I realized I misinterpreted it. Especially annoying because the example was working fine. So paradoxically part 2 was easier than 1.