My favourite one is the napkin ring problem. For any two spheres of any size, if they were cored like an apple to the same height, the volume of both rings would be exactly the same. A 5cm high napkin ring made out of a billiard cueball has exactly the same volume as a 5cm high napkin ring made out of a neutron star.
My favourite one is the napkin ring problem. For any two spheres of any size, if they were cored like an apple to the same height, the volume of both rings would be exactly the same. A 5cm high napkin ring made out of a billiard cueball has exactly the same volume as a 5cm high napkin ring made out of a neutron star.
this one makes sense to me, if you core a small sphere it's going to have a fat cross-section