Sounds like a bunch of made up Earthclan wolfling superstitions.

  • commiewithoutorgans [he/him, comrade/them]
    ·
    edit-2
    1 year ago

    It's funny, I was just thinking about that maths paper by Marx that I can only summarize as "dividing by 0 or infinity is ridiculous (immaterial?), and should not be the basis of maths" and how that just didn't really connect to my understanding of calculus. Do you think he just did not see the way that limits work or understood that and was disagreeing that this is a "real" basis of any math? HOURS LATER EDITED: I fucked up the quote bad so see my other comment

    • silent_water [she/her]
      ·
      1 year ago

      there's no way he understood this because at no point is anyone dividing by infinity or 0.

      • commiewithoutorgans [he/him, comrade/them]
        ·
        1 year ago

        I really wrote wrong what Marx's claim was; wrote this too early in the morning. "using limits instead of dividing by 0 is ridiculous and immaterial" is what his claim was. Really about how 0/0 could be a better basis than utilizing limits to get to a true basis. His claim was exactly what you say that nobody did; that 0/0 is meaningful and should be understood as the material/real basis of change or so

        • silent_water [she/her]
          ·
          1 year ago

          dividing by zero doesn't make sense arithmetically - in arithmetic, division is about cutting things into parts, so you can make no cuts and leave the singular whole, or you can make some number of cuts and divide the whole. algebraically, division by zero has no sensible result as it can produce any value between 0 and infinity (or negative infinity if we're approaching zero from the left). that is, it's not defined - to define division by zero as a function, we'd need to be able to assign it a particular value for any given input. if we abstract from numbers a little bit, and look at the structure that encapsulates basic arithmetic - rings - we find that the additive identity, usually denoted as 0 for the ring, never has a multiplicative inverse. the ill-definedness of division by zero is so fundamental that limits were introduced specifically so we could divide by zero rigorously - limits allow us to precisely choose a specific value out of the continuum that we expect a particular instance of zero division to evaluate to.