Tap for spoiler
The bowling ball isn’t falling to the earth faster. The higher perceived acceleration is due to the earth falling toward the bowling ball.
The bowling ball isn’t falling to the earth faster. The higher perceived acceleration is due to the earth falling toward the bowling ball.
This would make a good "What if?" for XKCD. In a frictionless vacuum with two spheres the mass of the earth and a bowling ball how far away do they need to start before the force acting on the earth sized mass contributes 1 Planck length to their closure before they come together? And the same question for a sphere with the mass of a feather.