The Great American Biotic Interchange (commonly abbreviated as GABI), also known as the Great American Interchange and the Great American Faunal Interchange, was an important late Cenozoic paleozoogeographic biotic interchange event in which land and freshwater fauna migrated from North America via Central America to South America and vice versa, as the volcanic Isthmus of Panama rose up from the sea floor and bridged the formerly separated continents. Although earlier dispersals had occurred, probably over water, the migration accelerated dramatically about 2.7 million years (Ma) ago during the Piacenzian age. It resulted in the joining of the Neotropic (roughly South American) and Nearctic (roughly North American) biogeographic realms definitively to form the Americas. The interchange is visible from observation of both biostratigraphy and nature (neontology). Its most dramatic effect is on the zoogeography of mammals, but it also gave an opportunity for reptiles, amphibians, arthropods, weak-flying or flightless birds, and even freshwater fish to migrate. Coastal and marine biota, however, was affected in the opposite manner; the formation of the Central American Isthmus caused what has been termed the Great American Schism, with significant diversification and extinction occurring as a result of the isolation of the Caribbean from the Pacific.

Isolation of South America

After the late Mesozoic breakup of Gondwana, South America spent most of the Cenozoic era as an island continent whose "splendid isolation" allowed its fauna to evolve into many forms found nowhere else on Earth, most of which are now extinct. Its endemic mammals initially consisted primarily of metatherians (marsupials and sparassodonts), xenarthrans, and a diverse group of native ungulates known as the Meridiungulata: notoungulates (the "southern ungulates"), litopterns, astrapotheres, pyrotheres and xenungulates. A few non-therian mammals – monotremes, gondwanatheres, dryolestids and possibly cimolodont multituberculates – were also present in the Paleocene; while none of these diversified significantly and most lineages did not survive long, forms like Necrolestes and Patagonia remained as recently as the Miocene.

Marsupials appear to have traveled via Gondwanan land connections from South America through Antarctica to Australia in the late Cretaceous or early Tertiary. Marsupials remaining in South America included didelphimorphs (opossums), paucituberculatans (shrew opossums) and microbiotheres (monitos del monte). Larger predatory relatives of these also existed, such as the borhyaenids and the saber-toothed Thylacosmilus; these were sparassodont metatherians, which are no longer considered to be true marsupials.

Pre-interchange oceanic dispersals

The invasions of South America started about 40 Ma ago (middle Eocene), when caviomorph rodents arrived in South America. Their subsequent vigorous diversification displaced some of South America's small marsupials and gave rise to – among others – capybaras, chinchillas, viscachas, and New World porcupines. The independent development of spines by New and Old World porcupines is another example of parallel evolution. This invasion most likely came from Africa. The crossing from West Africa to the northeast corner of Brazil was much shorter then, due to continental drift, and may have been aided by island hopping (e.g. via St. Paul's Rocks, if they were an inhabitable island at the time) and westward oceanic currents. Crossings of the ocean were accomplished when at least one fertilised female (more commonly a group of animals) accidentally floated over on driftwood or mangrove rafts. Hutias (Capromyidae) would subsequently colonize the West Indies as far as the Bahamas, reaching the Greater Antilles by the early Oligocene.

Later (by 36 Ma ago),primates followed, again from Africa in a fashion similar to that of the rodents. Primates capable of migrating had to be small. Like caviomorph rodents, South American monkeys are believed to be a clade (i.e., monophyletic). However, although they would have had little effective competition, all extant New World monkeys appear to derive from a radiation that occurred long afterwards, in the Early Miocene about 18 Ma ago.

The Caribbean Islands were populated primarily by species from South America, due to the prevailing direction of oceanic currents, rather than to a competition between North and South American forms. Except in the case of Jamaica, oryzomyine rodents of North American origin were able to enter the region only after invading South America.

Effects and aftermath

The formation of the Isthmus of Panama led to the last and most conspicuous wave, the Great American Biotic Interchange (GABI), starting around 2.7 Ma ago. This included the immigration into South America of North American ungulates (including camelids, tapirs, deer and horses), proboscids (gomphotheres), carnivorans (including felids such as cougars, jaguars and saber-toothed cats, canids, mustelids, procyonids and bears) and a number of types of rodents. The larger members of the reverse migration, besides ground sloths and terror birds, were glyptodonts, pampatheres, capybaras, and the notoungulate Mixotoxodon (the only South American ungulate known to have invaded Central America).

In general, the initial net migration was symmetrical. Later on, however, the Neotropic species proved far less successful than the Nearctic. This difference in fortunes was manifested in several ways. Northwardly migrating animals often were not able to compete for resources as well as the North American species already occupying the same ecological niches; those that did become established were not able to diversify much, and in some cases did not survive for long. Southwardly migrating Nearctic species established themselves in larger numbers and diversified considerably more, and are thought to have caused the extinction of a large proportion of the South American fauna.

Due in large part to the continued success of the xenarthrans, one area of South American ecospace the Nearctic invaders were unable to dominate was the niches for megaherbivores. Before 12,000 years ago, South America was home to about 25 species of herbivores weighing more than 1000 kg, consisting of Neotropic ground sloths, glyptodonts, and toxodontids, as well as gomphotheres and camelids of Nearctic origin.

Armadillos, opossums and porcupines are present in North America today because of the Great American Interchange. Opossums and porcupines were among the most successful northward migrants, reaching as far as Canada and Alaska, respectively. Most major groups of xenarthrans were present in North America until the end-Pleistocene Quaternary extinction event (as a result of at least eight successful invasions of temperate North America, and at least six more invasions of Central America only). Among the megafauna, ground sloths were notably successful emigrants; four different lineages invaded North America. A megalonychid representative, Megalonyx, spread as far north as the Yukon and Alaska, and might well have invaded Eurasia had a suitable habitat corridor across Beringia been present.

The effect of formation of the isthmus on the marine biota of the area was the inverse of its effect on terrestrial organisms, a development that has been termed the "Great American Schism". The connection between the east Pacific Ocean and the Caribbean (the Central American Seaway) was severed, setting now-separated populations on divergent evolutionary paths. Caribbean species also had to adapt to an environment of lower productivity after the inflow of nutrient-rich water of deep Pacific origin was blocked. The Pacific coast of South America cooled as the input of warm water from the Caribbean was cut off. This trend is thought to have caused the extinction of the marine sloths of the area.

Megathreads and spaces to hang out:

reminders:

  • 💚 You nerds can join specific comms to see posts about all sorts of topics
  • 💙 Hexbear’s algorithm prioritizes struggle sessions over upbears
  • 💜 Sorting by new you nerd
  • 🌈 If you ever want to make your own megathread, you can go here nerd
  • 🐶 Join the unofficial Hexbear-adjacent Mastodon instance toots.matapacos.dog

Links To Resources (Aid and Theory):

Aid:

Theory:

Remember nerds, no current struggle session discussion here to the general megathread, i will ban you from the comm and remove your comment, have a good day/night :meow-coffee:

  • ButtBidet [he/him]
    ·
    2 years ago

    I'm literally thinking of just canceling my holiday. I'm terrified of flying now.

    Shit I used to do, but won't now because people don't mask: the gym, movie theaters, coffee shops, libraries :angry-hex:

    • ElChapoDeChapo [he/him, comrade/them]
      ·
      2 years ago

      I'm planning a trip right now and I really don't want to cancel so I'm trying to figure out how to get a flight with as few people on it as possible

      Are early morning or overnight flights less popular? There has to be some way to minimize the risk and I feel like if I stay here I'll just die anyway without doing anything I want to

      • Frank [he/him, he/him]
        ·
        2 years ago

        Get a gas mask. It won't be comfortable but what's temporary discomfort against a lifetime of suffering?

      • ButtBidet [he/him]
        ·
        2 years ago

        Airlines generally try to fill up the aircraft, so you're not likely going to get a less than full plane. I'd imagine that people in the early morning are less likely to be drunks and possibly more considerate, but not overly so. Sorry comrade.

        • ElChapoDeChapo [he/him, comrade/them]
          ·
          edit-2
          2 years ago

          :yea:

          Tried looking into travel by boat instead and that's a whole different bunch of shit to deal with, including a lot of boat travel being canceled due to covid